A hybrid method for generation of attenuation map for MR-based attenuation correction of PET data in prostate PET/MR imaging
نویسندگان
چکیده
Department of Medical Physics and Biomedical Engineering and Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran Recently introduced PET/MRI scanners present significant advantages in comparison with PET/CT. However, the lack of accurate method for generation of μmap from MR images for implementation of MRAC is hampering further development. In this study, we present a new method including short echo-time pulse sequence to detect bone signal along with a robust and automatic image segmentation method base on FCM, active contouring and shape analysis to provide a three-classes μmap. The proposed imaging protocol implemented on a 1.5T Avanto scanner. The acquisition parameters were 1.11 msec and 20 msec for TE and TR, respectively, with FA=20. The image-processing protocol includes five major steps: (I) intensity-inhomogeneity correction using non parametric method, which is an essential step for removing bias field; (II) separation of bone and air from other areas using active contouring based on gradient vector method; (III) FCM in order to segment the image into two clusters, one cluster is bone and air and another cluster is soft tissue; (IV) separation of bone and air areas using shape analysis; (V) generation of μmap. The accuracy of the proposed segmentation method was validated using comparison against manual segmentation. The corresponding segmentation images and generated μmap prove the validity of algorithm. Quantitative analysis on accuracy, sensitivity and specificity for 15 segmented images in comparison with manual segmentation performed by an expert radiologist. The proposed strategy shows that the three tissue class μmap can be successfully generated from MR images in pelvis region using STE pulse sequence following by the image processing steps. The method can be a potential alternative to UTE-based attenuation correction. The algorithm is still under development and will be validated in more details based on comparison with the μmaps generate from CT images. This study has been developed particularly for improving the accuracy of MRAC in prostate imaging.
منابع مشابه
Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملComputed tomography based attenuation correction in PET/CT: Principles, instrumentation, protocols, artifacts and future trends
The advent of dual-modality PET/CT imaging has revolutionized the practice of clinical oncology, cardiology and neurology by improving lesions localization and the possibility of accurate quantitative analysis. In addition, the use of CT images for CT-based attenuation correction (CTAC) allows to decrease the overall scanning time and to create a noise-free attenuat...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملComparing 511 keV Attenuation Maps Obtained from Different Energy Mapping Methods for CT Based Attenuation Correction of PET Data
Introduction: The advent of dual-modality PET/CT scanners has revolutionized clinical oncology by improving lesion localization and facilitating treatment planning for radiotherapy. In addition, the use of CT images for CT-based attenuation correction (CTAC) decreases the overall scanning time and creates a noise-free attenuation map (6map). CTAC methods include scaling, s...
متن کاملMagnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps.
OBJECTIVES Attenuation correction of positron emission tomographic (PET) data is critical in providing accurate and quantitative PET volumes. Deriving an attenuation map (μ-map) from magnetic resonance (MR) volumes is a challenge in PET/MR hybrid imaging. The difficulty lies in differentiating cortical bone from air from standard MR sequences because both these classes yield little to no MR sig...
متن کاملHybrid PET/MR imaging: an algorithm to reduce metal artifacts from dental implants in Dixon-based attenuation map generation using a multiacquisition variable-resonance image combination sequence.
UNLABELLED It was the aim of this study to implement an algorithm modifying Dixon-based MR imaging datasets for attenuation correction in hybrid PET/MR imaging with a multiacquisition variable resonance image combination (MAVRIC) sequence to reduce metal artifacts. METHODS After ethics approval, in 8 oncologic patients with dental implants data were acquired in a trimodality setup with PET/CT...
متن کامل